

Energy Efficiency Operating Indicators (EEOI) for Baltic Exchange Tanker Routes

Version 7

March 2023

Table of contents

1.	Introduction	. 4
2.	An overview of the Energy Efficiency Operating Indicator	. 4
3.	Calculating the Energy Efficiency Operating Indicator	. 5
4.	Creating EEOI reference values for Baltic standard vessels and routes	. 5
5.	Calculating an Annual Operating Energy Efficiency value	. 8
6.	Calculating the annual carbon footprint	10
7.	Calculating the annual cargo carried	11
8.	Sea Cargo Charter EEOI values and BAEEOI values	12
9.	Maintaining Values over time	15
10.	Conclusion	15

1. Introduction

This document outlines the proposed incorporation of the Energy Efficiency Operating Indicator (EEOI) as a Baltic Exchange administered market comparison and benchmarking tool. The proposed system will calculate indicative EEOI values for commonly plied maritime trade routes using standard vessel characteristics and publish these to the market in a way that is similar to the existing Baltic Exchange indices. Such reference benchmarks will provide the shipping industry with a valuable point of reference and comparison as the market seeks to understand the inherent variability in operating efficiencies across routes and size classes and take practical steps to minimise its carbon footprint.

This document is a starting point for the Baltic Exchange EEOI benchmark consultation. Members will contribute their findings and actual vessel operating performance to validate and update the route EEOI assumptions and values, ensuring they reflect as close as possible the actual performance of vessels.

To ensure the standard vessel characteristics and reference EEOI values remain useful over time, the Baltic Exchange also proposes to work with members through forums and working groups to reflect actual EEOI figures for the routes in question. This activity mirrors the change process that the Baltic governs in relation to the standard Baltic vessel descriptions and routes.

2. An overview of the Energy Efficiency Operating Indicator

The International Maritime Organisation's (IMO) initial strategy on greenhouse gas reduction sets out sectoral targets to reduce absolute emissions from global maritime activity by 50% in 2050 compared to 2008 levels. Combined with increasing scrutiny by regional organisations and national governments and the advent of numerous sectoral initiatives focused on emissions reduction, tackling the challenge of maritime decarbonisation is a priority across the shipping industry.

Alongside publishing sectoral emissions targets, a suite of metrics and indicators has been developed and endorsed by the IMO and other maritime bodies to support and measure the industry's progress towards its carbon reduction goals. One of these metrics is the Energy Efficiency Operating Indicator (EEOI), an IMO endorsed¹ measure developed to help monitor and quantify emissions and vessel operating efficiency. The EEOI is the ratio of a vessel's CO₂ emissions to work performed and is a complementary measure to the Energy Efficiency Design Index (EEDI). The EEDI provides indicative information on a vessel's achievable efficiency based on its design characteristics and distance travelled in a year. In contrast, the EEOI provides insight into a vessel's actual efficiency on the water.

The EEOI is used for understanding and monitoring the operating efficiency of individual vessels for a particular voyage². More recently, however, the measure has also gained traction to measure portfolio efficiency across a fleet of vessels or activities. An annualised, weighted-average portfolio level calculation of the EEOI serves as the primary metric used by the Sea Cargo Charter (SCC) to track organisational alignment to IMO decarbonisation trajectories.

3. Calculating the Energy Efficiency Operating Indicator

Vessel operating efficiency may vary between voyages for numerous reasons. The amount of cargo carried, fuel consumed in ballast, changes in speed or behaviour, maintenance measures such as hull cleaning, or the installation of new components which impact the vessel's operating profile can all cause efficiency variation over time and from voyage to voyage. The EEOI provides visibility of the impacts of such changes. At the vessel level, repeated per voyage calculation of the EEOI provides valuable insight into a vessel's actual efficiency on the water across its life span.

The EEOI is defined by the IMO as the ratio of mass of CO_2 emitted per unit of transport work done. For a given voyage, this can be presented as:

$$EEOI = \frac{\sum_{j} (FC_{j} \times C_{Fj})}{m_{cargo} \times D}$$

Equation 1

Where EEOI is the Energy Efficiency Operating Indicator, j the fuel type, FC_j the mass of fuel consumed during the voyage (including the port time and ballast leg), C_{Fj} the CO_2 conversion factor for fuel j, m_{cargo} the mass of cargo carried (or equivalent work done) and D the laden distance in nautical miles.

For tankers and dry bulk carriers, the mass of cargo is expressed as metric tonnes of cargo carried. Conversion factors for common fuels are displayed in Table 1.

Fuel Type	Reference	Carbon Content	Conversion factor (tonnes of CO ₂ produced per tonne of fuel consumed)
Diesel/Gas Oil	ISO 8217 Grades DMX through DMC	0.875	3.206000
Light Fuel Oil (LFO)	ISO 8217 Grades RMA through RMD	0.86	3.151040
Heavy Fuel Oil (HFO)	ISO 8217 Grades RME through RMK	0.85	3.114400
Liquified Petroleum Gas (LPG)	Propane	0.819	3.000000
	Butane	0.827	3.030000
Liquified Natural Gas (LNG)		0.75	2.750000

Table 1 Fuel Type conversion factors for use in EEOI calculations

Equation 1 allows the calculation of the EEOI on a per vessel, per voyage basis, using vessel measurements commonly known and communicated as part of everyday operations and noon reporting.

4. Creating EEOI reference values for Baltic standard vessels and routes

It is possible to calculate actual EEOI values for given vessels and fleet portfolios, allowing the examination of changes in efficiency over time. In addition, it is also often useful to compare values across similar vessels and portfolios for a given snapshot in time. Such a frame of reference would be a helpful market comparison tool for organisations engaged in commercial maritime trade, seeking to meet targets related to their carbon footprint and operating efficiency levels. However, whilst vessel owners and

¹ MEPC Circ. 684 - Guidelines for voluntary use of the ship energy efficiency operational indicator (EEOI).

² A voyage consists of a ballast to a load port, load cargo and then proceed laden to a discharge port and discharge the cargo

operators may have access to such information on their own fleets, a lack of available reference data makes market level comparisons more challenging.

To address this, the Baltic Exchange has calculated indicative EEOI reference values based on Baltic standard vessel characteristics trading on the Baltic standard routes. The approach generates values for all the routes on which the Baltic Exchange already publishes a freight index, "Baltic Route EEOI values" (BREEOI). Table 3 outlines the steps in the calculation methodology used to calculate the BREEOI:

Step	Details
1.	 Define the characteristics of the standard vessel to be used in the reference EEOI calculation, including: a) Cargo carried as described in the Baltic route description, stowage factor or draft b) Fuel consumption rates for laden and ballast legs c) Fuel consumption in port idle and during operations, including heating if required d) Steaming speed on laden and ballast legs
2.	 Define the physical characteristics of the route in question, including: a) Laden and ballast leg distances b) Distance of any route portions where relevant fuel type regulations are applicable (e.g. Emission Control Areas)
3.	Calculate the total of each type of fuel consumed using consumption rates, steaming speeds and voyage distance information
4.	Convert the fuel consumption values into CO_2 emissions using the conversion factors outlined in Table 1
5.	Calculate the work done on the reference voyage by multiplying the cargo tonnage by laden distances
6.	Calculate the reference EEOI value for the route and vessel size by dividing the CO_2 emissions figure by the calculated work done

Table 2 Baltic Exchange Reference EEOI Calculation Methodology

Table 3 shows example calculation values for VLCC Route TD3 (Ras Tanura to Ningbo) using both full and Eco speed steaming regimes.

Parameter	Value at Full Speed	Value at ECO Speed
Cargo carried (tonnes)	270,000	270,000
Laden fuel consumption g/pd	74,500,000	45,000,000
Ballast fuel consumption g/pd	56,500,000	38,500,000
At-port fuel consumption g/pd	70,000,000	70,000,000
Laden leg steaming speed (knots)	13	11
Ballast leg steaming speed (knots)	12.5	11
Laden leg mileage (nm)	5897	5897
Laden ECA mileage (nm)	85	85
Laden non-ECA mileage (nm)	5812	5812
Ballast leg mileage (nm)	5897	5897
Ballast leg ECA mileage (nm)	85	85
Ballast leg non-ECA mileage (nm)	5812	5812
CO ₂ emissions produced (g)	9,132,125,154	6,994,032,828
Work done (tnm)	1,592,195,897	1,592,195,897
Reference EEOI value (gCO ₂ /tnm)	5.74	4.39

BREEOI values are calculated based on the vessel operating both at Full speed and a slower but more economical speed (Eco speed). Performing the voyage at Full or Eco speed impacts the amount of fuel consumed (CO_2 emitted) and the time taken to perform the voyage.

	BREE	OI Route Va	lues
Route	Full BREEOI	Eco BREEOI	Delta Eco- Full
TD01 (VLCC)	4.82	3.61	-1.20
TD02 (VLCC)	6.01	4.67	-1.34
TD03 (VLCC)	5.74	4.39	-1.34
TD15 (VLCC)	5.70	4.30	-1.39
TD22 (VLCC)	5.39	4.04	-1.34
TD06 (SUEZ)	13.06	10.39	-2.67
TD20 (SUEZ)	9.45	7.24	-2.21
TD23 (SUEZ)	8.78	6.73	-2.05
TD07 (AFRA)	23.56	20.49	-3.08
TD08 (AFRA)	12.61	9.62	-2.99
TD09 (AFRA)	16.49	13.06	-3.43
TD14 (AFRA)	12.63	9.64	-2.99
TD17 (AFRA)	12.54	10.08	-2.46
TD19 (AFRA)	14.36	11.37	-2.99
TD24 (AFRA)	13.20	10.81	-2.40
TD25 (AFRA)	14.12	10.69	-3.43
TD26 (AFRA)	22.04	18.58	-3.45
TC01 (LR2)	12.70	9.51	-3.19
TC15 (LR2)	11.77	8.78	-2.99
TC20 (LR2)	11.32	8.46	-2.86
TC05 (LR1)	13.29	10.13	-3.16
TC08 (LR1)	11.36	8.68	-2.67
TC16 (LR1)	12.60	9.70	-2.91
TD21 (PANA)	17.08	13.58	-3.50
TC02 (MR)	17.48	13.40	-4.08
TC07 (MR)	17.75	13.50	-4.25
TC10 (MR)	15.41	11.68	-3.73
TC11 (MR)	16.46	12.74	-3.72
TC12 (MR)	17.47	13.22	-4.25
TC14 (MR)	16.35	12.40	-3.95
TC17 (MR)	18.49	14.24	-4.25
TC18 (MR)	16.15	12.23	-3.92
TC19 (MR)	16.90	12.87	-4.03
TC21 (MR)	18.96	15.03	-3.93
TC06 (HAND)	31.82	27.18	-4.64
(HAND)	21.58	16.81	-4.77
TC23 (HAND)	39.59	34.83	-4.76
(HAND)	22.57	17.80	-4.77

Observations

As expected, the Eco BREEOI values shown in Figure 1 are lower than the Full BREEOI values, a vessel operating at a slower speed emits less CO_2 and carries the same amount of cargo over the same distance (same amount of work) as a vessel performing at full speed on the same voyage.

- For voyages with a shorter sailing distances the reduction in CO2 due to sailing slower at Eco speed is less, about 20% saving compared to 33% average for longer voyages.
- Port operations have an impact on shorter voyages. For example TC6 is a cross Mediterranean voyage of about 1.6 laden days. The CO2 emitted for five days of port operations is 40% of the total emissions.

5. Calculating an Annual Operating Energy Efficiency value

The IMO uses two definitions of carbon intensity, the EEOI and the Annual Efficiency Ratio (AER); both are a ratio of CO_2 emissions and work done.

EEOI represents the ratio of CO_2 emissions and work done for a specific voyage, whereas AER represents the ratio of a year's CO_2 emissions and the work done in the year, but with the following differences:

- EEOI calculates work as cargo carried multiplied by the distance of the laden leg
- AER calculates work as the deadweight of the vessel multiplied by total distance travelled in a year (ballast and laden)

The AER includes the ballast as work and ignores operational designs such as cubic capacity and deadweight draft ratios, as a result it assumes the vessel performs more work than the EEOI calculation.

To represent an annual value the Baltic calculates an implied annual operating efficiency ratio based on the BREEOI calculations for each vessel size, Equation 3. An annual EEOI value reflects the average of the vessel type trading all the routes for one year³. To calculate a Baltic Annual EEOI (BAEEOI) the Baltic uses all the routes for a vessel type and applies a Time factor⁴. A vessel operating at Eco speed does less work in a year than at Full speed as it performs fewer voyages, and the *TimeFactor* takes this into account, Equation 2.

$$TimeFactor = \frac{360}{Sum(\sum_{i=1}^{r} VoyageDuration \ i)}$$

Equation 2

$$BAEEOI = \frac{Sum\left(\sum_{i=1}^{r} \frac{(Fuel \times Conversion)}{TimeFactor} i\right)}{Sum\left(\sum_{i=1}^{r} \frac{(LadenMileage \times Cargo)}{TimeFactor} i\right)}$$

Equation 3

³ 360 trading days. Five days are assumed to allowed for off-hire, repairs where the vessel is not available for trading

⁴ Total duration of all the routes divided by 360

Figure 2 displays plots indicating the spread and distribution of BAEEOI differences within major size classes found in Table 4. A summary of key calculation information can be found in Table 5.

Table 3		
Vessel	Deadweight	Cargo Type
VLCC	300,000	Dirty
SUEZMAX	160,000	Dirty
AFRAMAX	105,000	Dirty
LR2	105,000	Clean
PANAMAX	75,000	Dirty
LR1	75,000	Clean
MR	47,000	Clean
HANDY	37,800	Clean

Vessel Size	BAEEOI Values									
	Full Speed	Eco Speed	Delta							
VLCC	5.53	4.20	-1.33							
SUEZMAX	10.43	8.12	-2.31							
AFRAMAX	15.73	12.70	-3.03							
LR2	11.93	8.92	-3.01							
PANAMAX	17.08	13.58	-3.50							
LR1	12.42	9.50	-2.92							
MR	17.14	13.13	-4.01							
HANDY	26.30	21.72	-4.58							

Figure 2

6. Calculating the annual carbon footprint

As set out in Table 2 step 4, the EEOI calculation process calculates the amount of CO_2 by converting the fuel consumption into carbon emissions using the conversion factors outlined in Table 1. The annual amount of CO_2 can be calculated, Equation 4, using the same routes and weightings to calculate the BAEEOI for each vessel size at Full and Eco speed.

$$AnnualCO2 = Sum\left(\sum_{i=1}^{r} \frac{(Fuel \times Conversion)}{TimeFactor} i\right)$$

		Annualise		10,000	20,000	30,000	40,000	50,000	60,000	70,000	00,000		
Vessel Size	(Тс	onne)	Eco-				-						
	Full	Eco	Delta	%	VLCC								
VLCC	72,420	47,740	-24,680	-34%	SUEZMAX								
SUEZMAX	53,751	36,805	-16,946	-32%									
AFRAMAX	44,309	30,864	-13,445	-30%	AFRAMAX			-					
LR2	45,805	29,937	-15,868	-35%	LR2								
PANAMAX	30,927	22,182	-8,745	-28%									
LR1	33,934	22,798	-11,136	-33%	PANAMAX						Eco Sou		
MR	28,028	18,836	-9,392	-33%	LR1						Leo Spi		
HANDY	23,684	16,506	-7,178	-30%							FullSp	eed	
					MR	-							
					HANDY								
Figure 3													

Observations

Figure 3 shows the CO_2 emissions are less when operating at Eco speed and is lower for smaller vessels, which was expected. Only looking at the quantity of CO_2 emitted overlooks that a larger vessel is doing more work also that vessels operating at slower speeds will carry less cargo in a year, or more ships are needed to carry the same amount of cargo.

7. Calculating the annual cargo carried

The annual amount of cargo carried can be calculated, Equation 5, using the same routes to calculate the BAEEOI for each vessel size at Full and Eco speed.

AnnualCargo = Sum
$$\left(\sum_{i=1}^{r} \frac{(Cargo)}{TimeFactor} i\right)$$

Equation 5

Observations

Figure 4 shows the calculated annual quantity of cargo carried in one year. When comparing the amount of cargo carried and the CO₂ emitted in a year.

• A VLCC carries 13% less cargo operating at Eco Speed and emit 35% less CO₂.

This simplistic view would indicate it is better to have more vessels operating at Eco speed. However, the carbon footprint of building more vessels, inefficiencies in positioning and many other factors such as enforcement of slow speed, need to be considered.

The main observation is that the ratio of CO_2 emissions to work done enables comparison between vessels, the way they operate and are operated. It supports the IMO position to use a ratio calculation of CO_2 and work done for the Carbon Intensity Indicator (CII) journey.

8. Sea Cargo Charter EEOI values and BAEEOI values

The Sea Cargo Charter⁵ (SCC) is a maritime organisation set up to help signatories understand their operating carbon footprint and determine whether their overall emissions intensity aligns with IMO targets to reduce absolute emissions from global activity by 50% compared to 2008 levels. The EEOI is the primary metric used by the SCC to track and evaluate a signatory organisation's emissions footprint.

To determine alignment with IMO targets, the SCC has defined overall decarbonisation trajectories to be attained by signatories across their maritime activities. Decarbonisation trajectories are calculated pathways to reach IMO targets following progressive reductions in carbon intensity, as measured by the EEOI, over time. Each year, the SCC publishes data provided by signatories indicating whether their carbon intensities align with the requirements set by the decarbonisation trajectory. Because carbon intensities vary depending on ship type and size, as well as publishing annualised, aggregated figures of alignment for the entire portfolio of a signatory, the SCC also examines alignment within vessel size and type classes.

We compare the SCC required EEOI values with the Baltic Exchange's BREEOI and BAEEOI calculated values in the section below.

SCC Required EEOI values and Decarbonisation Trajectories

To determine climate alignment, SCC signatories reference annualised vessel EEOI figures to compare with decarbonisation trajectory derived required values. Because carbon intensity varies across vessels, EEOI values are provided for defined categories relating to vessel size and type.

Trajectory Values were calculated by examining the IMO target of a 50% reduction in emissions compared with 2008, with additional allowance made for projected growth in shipping activity levels over time. Between the 2012 and 2050 calibration points, a linear trajectory is assumed, reflecting a constant improvement in carbon intensity figures over time. Technical guidance of the SCC is available on its website⁶.

⁵ https://www.seacargocharter.org/

⁶ <u>https://www.seacargocharter.org/resources</u>

SCC EEOI values over time

The SCC process allows signatories to compare their carbon intensity alignment at the portfolio and category level with defined values mathematically derived from decarbonisation trajectories. However, whilst this comparison is helpful for showing progress towards overarching annual goals, it does not provide a mechanism for relative benchmarking based on voyages performed. Such a frame of reference would be a useful additional market comparison tool.

Comparing Sea Cargo Charter EEOI values with Baltic annualised EEOI values, BAEEOI

Figure 5 displays box plots indicating the spread and distribution within vessel sizes of the BAEEOI Full and Eco Speed over the SCC 2023 values.

Observations

The Baltic BAEEOI values map well to the SCC values, in both Baltic and SCC values, larger vessels have lower EEOI scores than smaller counterparts reflecting their overall improved efficiency compared with smaller vessels. There is a difference related to Dirty cargo requiring heating to enable the cargo to be discharged.

Figure 6 plots the Baltic route EEOI values against the SCC 2023 target values

			nacs
Route	Full BREEOI	Eco BREEOI	Delta Eco- Full
TD01 (VLCC)	4.82	3.61	-1.20
TD02 (VLCC)	6.01	4.67	-1.34
TD03 (VLCC)	5.74	4.39	-1.34
TD15 (VLCC)	5.70	4.30	-1.39
TD22 (VLCC)	5.39	4.04	-1.34
TD06 (SUEZ)	13.06	10.39	-2.67
TD20 (SUEZ)	9.45	7.24	-2.21
TD23 (SUEZ)	8.78	6.73	-2.05
TD07 (AFRA)	23.56	20.49	-3.08
TD08 (AFRA)	12.61	9.62	-2.99
TD09 (AFRA)	16.49	13.06	-3.43
TD14 (AFRA)	12.63	9.64	-2.99
TD17 (AFRA)	12.54	10.08	-2.46
TD19 (AFRA)	14.36	11.37	-2.99
TD24 (AFRA)	13.20	10.81	-2.40
TD25 (AFRA)	14.12	10.69	-3.43
TD26 (AFRA)	22.04	18.58	-3.45
TC01 (LR2)	12.70	9.51	-3.19
TC15 (LR2)	11.77	8.78	-2.99
TC20 (LR2)	11.32	8.46	-2.86
TC05 (LR1)	13.29	10.13	-3.16
TC08 (LR1)	11.36	8.68	-2.67
TC16 (LR1)	12.60	9.70	-2.91
TD21 (PANA)	17.08	13.58	-3.50
TC02 (MR)	17.48	13.40	-4.08
TC07 (MR)	17.75	13.50	-4.25
TC10 (MR)	15.41	11.68	-3.73
TC11 (MR)	16.46	12.74	-3.72
TC12 (MR)	17.47	13.22	-4.25
TC14 (MR)	16.35	12.40	-3.95
TC17 (MR)	18.49	14.24	-4.25
TC18 (MR)	16.15	12.23	-3.92
TC19 (MR)	16.90	12.87	-4.03
TC21 (MR)	18.96	15.03	-3.93
TC06 (HAND)	31.82	27.18	-4.64
TC09 (HAND)	21.58	16.81	-4.77
TC23 (HAND)	39.59	34.83	-4.76

Figure 6

9. Maintaining Values over time

A reliable reference point will be required to measure the outcomes of emission reduction measures in the global fleet on an ongoing basis. This may be a combination of efficiency improvements, alternatives fuels and operational enhancements. Members and ship operators will assist by providing regular feedback through a structured process which will capture relevant changes and advances as these measures are implemented more widely. This will ensure the ongoing accuracy of the route-based market reference points produced. Companies interested in participating in maintaining the relevance of the EEOI values are encouraged to contact - emissions@balticexchange.com.

10. Conclusion

The production of indicative reference based on round voyage EEOI figures by the Baltic Exchange for the common commercial trade routes provides the maritime supply chain with an emissions indicator for market comparison and voyage optimisation. EEOI is a common global standard which will support shipping companies and cargo interests in their decision making processes on their journey to reduce emissions.

The Baltic has an established process for managing changes to benchmarks and for working with members to ensure that they are relevant to the underlying market and ensure that the references figures published back to the market remain reflective of changes in the operating profile of the global fleet over time.

Table 5 EEOI calculation data

Tanker Bulk Routes (Load/Discharge)	Ballast starts from	Cargo Carried (tonnes)	Ballast mileag e (nm)	Laden mileag e (nm)	Ballas t Knots	Lade n Knots	Sailing CO2 (tonne)	In Port CO2 (tonne)	Total CO2 (tonne)	Total Work done (tnm)	EEOI (gCO2/tnm) Eco Speed Full Speed
TD01 (VLCC) - Ras Tanura/Louisiana	Louisiana	280.000	9.631	12,338	12.5	13.0	15,757	878	16,635	3,454,640,000	4.82
Offshore	Louisiana	200,000	5,051	12,550	11.0	11.0	11,602	877	12,478	3,454,640,000	3.61
TD02 (VICC) - Pas Tanura/Singanore	Ningho	270 000	3 725	2 724	12.5	13.0	5,216	845	6,061	1,008,180,000	6.01
TD02 (VLCC) - Kas Tanura/Singapore	Niigbo	270,000	3,733	5,754	11.0	11.0	3,863	845	4,707	1,008,180,000	4.67
TD03C (VLCC) - Ras Tanura/Ningho	Singapore	270.000	5 897	5,897	12.5	13.0	8,240	892	9,132	1,592,190,000	5.74
	Singapore	270,000	3,037		11.0	11.0	6,102	892	6,994	1,592,190,000	4.39
TD15 (VICC) - Serpenting /Ningho	Ningho	260.000	10 21 2	10,212	12.5	13.0	14,267	861	15,128	2,655,120,000	5.70
	iningso	200,000	10,212		11.0	11.0	10,565	861	11,426	2,655,120,000	4.30
TD22 (VLCC) - Galveston/Ningbo	Ningho	270.000	15 266	15 265	12.5	13.0	21,333	866	22,199	4,121,550,000	5.39
	Ningbo	270,000	13,200	15,205	11.0	11.0	15,798	866	16,664	4,121,550,000	4.04
	Bottordam	130.000	4 475	4 474	12.5	13.0	4,956	542	5,498	581,620,000	9.45
1520 (SOL2) - Offshore Bonny, Kotterdam	Kotterualli	130,000	4,475	4,474	11.0	11.0	3,668	542	4,210	581,620,000	7.24
TD23 (SUEZ) - Basrah / Javara	lavera	140 000	4 851	4 851	12.5	13.0	5,358	604	5,962	679,140,000	8.78
1925 (SOL2) - Dastally Lavera	Lavera	140,000	4,001	4,851	11.0	11.0	3,966	604	4,570	679,140,000	6.73
TD06 (SUEZ) - Novorossivsk (Augusta	Augusta	135 000	1 269	1 268	12.5	13.0	1,694	542	2,236	171,180,000	13.06
(SOLL) - NOVOLOSSIYSK/ Augusta	Augusta	155,000	1,205	1,200	11.0	11.0	1,236	542	1,778	171,180,000	10.39
TD14 (AEDA) - Soria (Brichano	Brichano	80.000	3 803	3 803	12.5	13.0	3,429	413	3,841	304,160,000	12.63
IDI4 (AFRA) - Selia/ Brisballe	Brisballe	80,000	5,002	3,002	11.0	11.0	2,520	413	2,932	304,160,000	9.64
TD17 (AEDA) - Brimorek (Wilhelmebayon	Wilhelmshave	100 000	1 205	1 205	12.5	13.0	1,211	425	1,636	130,500,000	12.54
TD17 (AFRA) - PTIHOISK/ WIIHeinishaven	n	100,000	1,505	1,305	11.0	11.0	890	425	1,315	130,500,000	10.08
TD19 (AEPA) - Covban /Lavora	Lavora	80.000	1 720	1 710	12.5	13.0	1,551	425	1,975	137,520,000	14.36
TOTS (AFRA) - Ceynan/Lavera	Lavera	80,000	1,720	1,/19	11.0	11.0	1,139	425	1,564	137,520,000	11.37
TD24 (AFRA) - Kozmino/Qingdao	Qingdao	100,000	1,015	1,014	12.5	13.0	916	423	1,339	101,400,000	13.20

					11.0	11.0	673	423	1,096	101,400,000	10.81
TD25 (AEPA) - Houston/Potterdam	Potterdam	70.000	5 113	5 112	12.5	13.0	4,628	425	5,053	357,840,000	14.12
1525 (Al KA) - Houstony Kotterdam	Kotterdam	70,000	5,115	5,112	11.0	11.0	3,401	425	3,826	357,840,000	10.69
TD26 (AFRA) - Dos Bocas/Houston	Houston	70 000	670	670	12.5	13.0	611	423	1,034	46,917,500	22.04
	nouston	70,000	070	070	11.0	11.0	449	423	872	46,917,500	18.58
TD07 (AFRA) - Hound	Wilhelmshave	80.000	ллл	444	12.5	13.0	412	425	837	35,520,000	23.56
Point/Wilhelmshaven	n	00,000			11.0	11.0	303	425	728	35,520,000	20.49
TD08 (AFRA) - Mina Al Ahmadi/Singapore	Singanore	80.000	3,861	3,861	12.5	13.0	3,482	1,316	3,895	308,880,000	12.61
	Singupore	00,000			11.0	11.0	2,559	1,316	2,972	308,880,000	9.62
TD09 (AFRA) - Covenas/Corpus Christi	Cornus Chrisi	70 000	1 700	1 699	12.5	13.0	1,538	423	1,961	118,930,000	16.49
TD09 (AFRA) - Covenas/Corpus Cirristi		70,000	1,700	1,055	11.0	11.0	1,130	423	1,553	118,930,000	13.06
TC01 (LR2) - Ras Tanura/Yokohama	Yokohama	75 000	6 638	6 637	12.5	13.0	5,986	335	6,320	497,775,000	12.70
		75,000	0,030	0,037	11.0	11.0	4,399	335	4,733	497,775,000	9.51
	Chiba	80.000	9 269	0.260	12.5	13.0	8,359	366	8,725	741,520,000	11.77
	Ciliba	00,000	5,205	5,205	11.0	11.0	6,143	366	6,508	741,520,000	8.78
TC16 (IR1) - Amsterdam / I ome	Lome	60.000	4 182	4 171	12.5	13.0	2,907	247	3,154	250,260,000	12.60
	Lonic	00,000	1,102	1,171	11.0	11.0	2,180	247	2,427	250,260,000	9.70
TC05 (I R1) - Ras Tanura/Yokohama	Yokohama	55 000	6 637	6 637	12.5	13.0	4,605	246	4,851	365,035,000	13.29
	Tokonania	55,000	0,037	0,037	11.0	11.0	3,453	246	3,699	365,035,000	10.13
TC08 (I B1) - Jubail/Rotterdam	Rotterdam	65 000	6 507	6 514	12.5	13.0	4,526	283	4,809	423,410,000	11.36
	Rotterdam	03,000	0,507	0,511	11.0	11.0	3,394	283	3,677	423,410,000	8.68
TD21 (PANA) - Mamonal/Houston	Houston	50,000	1.629	1.628	12.5	13.0	1,138	427	1,390	81,400,000	17.08
		50,000	1,023	1,020	11.0	11.0	853	427	1,106	81,400,000	13.58
TC10 (MR) - Yosu/Los Angeles	Los Angeles	40.000	5.375	5.375	12.5	13.0	3,105	208	3,314	215,000,000	15.41
		40,000	0,070	3,373	11.0	11.0	2,304	208	2,512	215,000,000	11.68
TC11 (MR) - Yosu/Singapore	Singapore	40.000	2.480	2,480	12.5	13.0	1,429	204	1,632	99,200,000	16.46
TC11 (MR) - Yosu/Singapore	Singapore	40,000	2,100	2,480	11.0	11.0	1,060	204	1,264	99,200,000	12.74

TC12 (MR) - Jamangar/Chiba	Chiba	35,000	5.717	5.716	12.5	13.0	3,293	202	3,495	200,060,000	17.47
		55,000	5,727	5,7 10	11.0	11.0	2,443	202	2,645	200,060,000	13.22
TC14 (MR) - Houston/Amsterdam	Amsterdam	38.000	5 141	5 141	12.5	13.0	2,986	208	3,194	195,358,000	16.35
	Anisteruum	50,000	5,111	5,111	11.0	11.0	2,215	208	2,423	195,358,000	12.40
TC17 (MP) - Jubail/Dar-es-Salaam	Dar-es-	35.000	2 955	2.054	12.5	13.0	1,644	202	1,847	99,890,000	18.49
	Salaam	55,000	2,035	2,034	11.0	11.0	1,220	202	1,422	99,890,000	14.24
TC18 (MP) - Houston/Santos	Santos	38.000	5 501	5 590	12.5	13.0	3,227	204	3,431	212,420,000	16.15
TCTB (MK) - Houston/ Santos	Santos	58,000	5,551	3,390	11.0	11.0	2,394	204	2,598	212,420,000	12.23
TC19 (MR) - Lagos/Amsterdam	Amsterdam	37 000	4 201	4,291	12.5	13.0	2,479	204	2,683	158,767,000	16.90
	Anisteruum	57,000	1,231		11.0	11.0	1,839	204	2,043	158,767,000	12.87
TC02 (MR) - Rotterdam/New York	New York	37 000	3 349	3,348	12.5	13.0	1,957	208	2,165	123,876,000	17.48
		57,000	5,515	5,510	11.0	11.0	1,452	208	1,660	123,876,000	13.40
TCO7 (MR) - Singanore /Sydney	Sydney	35.000	4 471	4,471	12.5	13.0	2,575	202	2,778	156,485,000	17.75
icor (int) ongapore, syancy		33,000	1,171		11.0	11.0	1,911	202	2,113	156,485,000	13.50
TC06 (HAND) - Skikda/Lavera	Lavera	30.000	407	406	12.5	13.0	213	175	388	12,180,000	31.82
		50,000		100	11.0	11.0	156	175	331	12,180,000	27.18
TC09 (HAND) - Primorsk/Le Havre	l e Havre	30.000	1 6 1 6	1,617	12.5	13.0	870	176	1,047	48,510,000	21.58
	Le nurre	50,000	1,010		11.0	11.0	639	176	815	48,510,000	16.81
TC20 (IR2) - Jubail/Rotterdam	Jubail	90.000	6 507	6 514	12.5	13.0	6,241	394	6,636	586,260,000	11.32
	Jubun	50,000	0,507	0,511	11.0	11.0	4,566	394	4,960	586,260,000	8.46
TC21 (MR) - US Gulf/Caribbean	Houston	38,000	1.638	1.638	12.5	13.0	948	232	1,180	62,244,000	18.96
	nouston	50,000	1,050	1,050	11.0	11.0	703	232	935	62,244,000	15.03
TC23 (HAND) - ARA/UK-Cont.	Amsterdam	30,000	307	308	12.5	13.0	166	200	366	9,240,000	39.59
	. unoter dulli	30,000	507	300	11.0	11.0	122	200	322	9,240,000	34.83
TD18 (HAND) - Baltic/UK-Cont	Amsterdam	30.000	1 272	1 272	12.5	13.0	685	288	861	38,160,000	22.57
	Anoteruali	50,000	1,272	1,272	11.0	11.0	503	288	679	38,160,000	17.80